Strålande miljö

Kurt Lidén
Sören Mattsson
Bertil Persson
CWK Gleerup

Miljökunskap

Kurslitteratur för översiktskurs i miljövård, 10 poäng.
Serien är framtagen av Miljövårdsprogrammet
vid Lunds Universitet och Tekniska Högskola
under redaktion av Lars Emmelin.
Taekningar: Carin Lingårdh

INNEHÅLLSFÖRTECKNING

Introduktion 1
Strålningsfysikaliska grundbegrepp 4
Biologiska effekter av joniserande strålning 14
Människans naturliga strålningsmiljö 22
Användningen av joniserande strålning och radioaktiva ämnen inom sjukvården 26
Radionuklidproduktion i kärnkraftreaktorer och utsläpp från kärntechniska anläggningar 31
Radionuklidproduktion och radioaktivt nedfall vid kärnladdningsexplosioner 36
Radionuklidspridning från satelliter 40
Artificiella radionuklider i vår omgivning; näringskedjor 42
Internationella rekommendationer för användningen av joniserande strålning och radionuklider 52
Miljöteknisk användning av radionuklider 59
Reflektioner 63
Appendix 1 (Fysikalisk nomenklatur och definitioner) 66
Appendix 2 (Olika kraftreaktortyper) 69
Appendix 3 (Litteraturanvisningar) 70
Människan har liksom alla andra levande vargelser alltid varit utsatt för bestrålning från världsrymden (kosmisk strålning) och från naturligt radioaktiva ämnen i marken och luften samt från ämnen – också de naturligt radioaktiva – som via födan kommit in i kroppen. (Se fig. 1)

Fig. 1 Olika komponenter i människans strålningssomkret.
Människan själv har emellertid under den alla sista delen av sin historia infört nya icke-naturliga källor för sin bestrålning.

Vid 1800-talets slut gjordes upptäckter, som blev viktiga fundament för en ny naturvetenskaplig världsbild. Bland de viktigaste händelserna under denna period märkes upptäckten av röntgenstrålingen (Röntgen, 1895) och den naturliga radioaktiviteten (Becquerel, 1896) samt isoleringen av grundämnenas polonium och radium (M. och P. Curie, 1898). Samtidigt utvecklades sig ur kunskapen om och användningen av de nya strålkällorna en ny miljöfaktor för människan. Möjligheten att erhålla joniserande strålning på konstladd väg (röntgenröret) och erhålla naturliga strålkällor i högkoncentrerad form (radium) medförde en helt ny situation. Omedelbart efter Röntgens upptäckt inleddes intensiva undersökningar av röntgenstrålningens fysikaliska egenskaper.

Med dätida kunskaper förväntade man sig ej någon biologisk verkan av röntgenstrålningen. Snart märkte man emellertid att vid långvarig bestrålning av huden blev denna röd "liksom solbränd". Vidare iakttagelser visade att långvarig bestråling av huden gav upphov till kronisk uttorkning, pigmentförskjutningar, fjällbildningar, vårt- och hornbildningar, häravfall, sköra och sprucken naglar, etc. Karakteristiskt var i dessa fall också en abnorm känslighet för små sår, som uppvisade en starkt fördröjd läkning. På bottnen av den strålskadade "röntgenhuden" utvecklade sig ibland under årens lopp svårartade svulster. Många pionjärer inom röntgenforskningen föll offer för strålsäder av denna typ. Inom de fem första åren efter Röntgens upptäckt inrapporterades bortemot 200 strålsäder. Genom den ökade användningen av röntgenstrålningen inom medicinsk diagnostik, framför allt i samband med första världskriget, ökades skadorfrekvensen och fram till 1922 hade ca 100 radiologer (alltså ej patienter) dött som följd häv. Efterhand utarbetades regler och anvisningar för att minska strålningens skadeverkningar.

STRÄLNINGSFYSIKALISKA GRUNDBEGREPP

För att rätt kunna förstå och bedöma konsekvenserna av att vistas i en strålningsmiljö är det nödvändigt för oss att känna till en del fysikaliska egenskaper hos de radioaktiva ämnen och den strålning som ingår som komponenter i vår miljö.

Den strålning som vi skall behandla innefattar alfa, beta, gamma, röntgen och neutronstrålning. Dessa olika typer av strålning kallas med ett gemensamt namn för joniserande strålning. Denna strålning är nämligen mycket energirik och då den tränger in i materia sliter den loss elektroner från materialets atomer som därvid blir positivt laddade s.k. joner. (Se fig.2 och 3) Då energirika (radioaktiva) atomkärnor övergår till stabila tillstånd med lägre energi, utsändes ofta överstjärnenergin som joniserande strålning. En sådan process kallas radioaktivt sönderfall.

Alfa (α)-strålning utgöres av positivt laddade heliumkärnor vilka utsändes med bestämd karakteristisk energi då tunga radioaktiva atomkärnor (t ex 238U, 226Ra) sönderfaller. Då en α-partikel tränger in i materia rycks de negativt laddade elektronerna loss från materialets atomer. Resultatet blir ett spår av positivt laddade restatomer (joner) och fria elektroner. (Se fig.2)

Fig. 2 Bildandet av positiva joner och fria elektroner då en α-partikel passerar materiens atomer.
Alfa(α)-strålningen har mycket kort räckvidd, dvs svag penetrationsförmåga, i levande materia. Den producerar ett kort rakt spår, vanligtvis kortare än 0,1 mm, med tät jonisation (4000 - 9000 jonpar per μm; 1 μm = 0,001 mm). (Se fig. 2,12)

Beta(β)-strålning utgöres av elektroner vilka utsändes från både lätta och tunga radioaktiva atomkärnor (t ex ³H, ¹⁴C, ¹³¹I, ²¹⁰Pb). Då en β-partikel inträffer i materia kolliderar den med materialets atomer som därför övergår till joner.

Fig. 3 Bildandet av en positiv jon och en fri elektron då en β-partikel kolliderar med en atom.

Räckvidden eller penetrationsförmågan av β-strålning i levande material är vanligtvis mindre än några cm. (Se fig.5) De lämnar ett oregelbundet spår med ganska gles jonisation (mindre än 100 jonpar per μm).

Gamma(γ)-strålning utgöres av elektromagnetisk strålning, dvs den är av samma natur som vanligt ljus men av betydligt högre energi. Gamma(γ)-strålnings energi är karakteristisk för det radioaktiva ämne från vilket den utsändes. Genom att analysera energifördelningen av γ-strålningen från ett okänt "prov" kan man således bestämma vilka radioaktiva ämnen som ingår i provet. Detta är en mycket använd analytisk metodik som kallas γ-spektrometri. Som framgår av fig.5 har γ-strålningen mycket större penetrationsförmåga än α- och β-strålning och jonisationen i levande materia är ganska gles, omkring 20 jonpar per μm.

Eftersom γ-strålningen inte har någon elektrisk ladning joniserar den materien indirekt genom att energin först överförs till elektroner.

![Diagram](image)

Fig. 4 Karakteristisk röntgenstrålning uppstår vid övergångar mellan olika elektronbanor. Bromstrålning uppstår då en infallande elektron med hög energi bromsas upp i närheten av atomkärnor. Gamma(γ)-strålning uppstår vid omlagringar av protoner eller neutroner inuti atomkärnan.
Fig. 5 Demonstration av genomträngningsförmågan hos alfa, beta och gammastrålning. Alfastrålningen stoppas av ett vanligt skrivpapper och betastrålningen av en tjock träskiva. Gammastrålningen däremot kräver tjocka betongblock eller bly för att stoppas.

Det finns också några andra strålingstyper som är av vikt att känna till i den följande diskussionen.

Neutroner är beståndsdelar i atomkärnan från vilken de slungs ut vid vissa kärnprocesser, t ex fission. Eftersom neutronerna inte har någon elektrisk laddning kan de inte producera direkt jonisation. Snabba neutroner (med energi större än 10 keV) förlorar sin energi i huvudsak vid kollisioner med lätta atomer, speciellt väteatomer. Kärnan i den kolliderande atomen lösgöres som positiv partikel (rejkylkärna) och kan sedan jonisera direkt. (Jfr fig. 2) Liksom γ-strålning har snabba neutroner mycket stor penetrationsförmåga. Långsamma neutroner har endast liten energi att förlora vid kollisioner med materialets atomer. De infångas i stället av materialets atomkärnor och producerar kärnreaktioner som resulterar i emission av laddade partiklar (α, β) eller γ-strålning samt nya ämnen som i många fall är radioaktiva.
Fysikalisk halveringstid

Ett radioaktivt sönderfall innebär att en atomkärna gör sig av med sin överskottskraft genom att ut- sända α, β eller γ-strålning. Denna process äger rum slumpmässigt, vilket innebär att alla radioaktiva kärnor inte sönderfaller samtidigt. Utgår vi ifrån ett radioaktivt preparat som innehåller 100 radioaktiva kärnor har efter ett visst tidsintervall antalet reducerats till hälften och efter ytterligare ett tidsintervall till en fjärde del, osv.

<table>
<thead>
<tr>
<th>Antal radioaktiva atomkärnor</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>25</td>
</tr>
</tbody>
</table>

![Diagram](image)

start t=0
efter t=T₁/₂
efter t=2T₁/₂

Fig. 6 Den tid som går åt för att antalet radioaktivt sönderfaller till hälften kallas det radioaktiva ämnets halveringstid (T₁/₂).

Den fysikaliska halveringstiden, T₁/₂, är en för radionukliden karakteristisk konstant, som ej kan påverkas av yttre omständigheter.

Aktivitet – curie (Ci)

Med aktivitet menas antalet radioaktiva sönderfall per tidenhet i en kvantitet radioaktivt material. Aktivitet uttryckes ofta med enheten curie (Ci):

1 curie	= 3,7 • 10¹⁰ sönderfall/sekund
1 millicurie (mCi)	= 3,7 • 10⁷
1 mikrocurie (μCi)	= 3,7 • 10⁴
1 nanocurie (nCi)	= 37
" "	= 2220 sönderfall/minut
1 picocurie (pCi)	= 2,22
Samband mellan aktivitet och halveringstid

Vi utgår från ett radioaktivt preparat med aktiviteten 100 mCi och vill veta vilken aktivitet det har efter en viss tid. Efter en halveringstid har aktiviteten sjunkit till 50 mCi och efter ytterligare en halveringstid till 25 mCi osv enligt nedanstående tabell.

<table>
<thead>
<tr>
<th>Tid</th>
<th>Aktivitet</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100 mCi</td>
</tr>
<tr>
<td>1 $T_{1/2}$</td>
<td>$100/2 = 50$ mCi</td>
</tr>
<tr>
<td>2 $T_{1/2}$</td>
<td>$50/2 = 100/2^2 = 25$ mCi</td>
</tr>
<tr>
<td>3 $T_{1/2}$</td>
<td>$25/2 = 100/2^3 = 12,5$ mCi</td>
</tr>
<tr>
<td>$t = N \cdot T_{1/2}$</td>
<td>$100/2^N$ mCi</td>
</tr>
</tbody>
</table>

Allmänt gäller att aktiviteten efter tiden $N \cdot T_{1/2}$ är lika med ursprungliga aktiviteten (vid t=0) dividerad med 2 upphöjt till N = $t/T_{1/2}$

dvs $A(t) = A(0)/2^N = A(0)/2^{t/T_{1/2}}$

Logaritmeras denna ekvation med naturliga logaritmer (\ln) erhålls

$\ln A(t) = \ln A(0) - 0,693 \cdot \frac{t}{T_{1/2}} \cdot \ln e$

vilket omskrivet i exponentform blir

$A(t) = A(0) \cdot e^{-0,693 \cdot t/T_{1/2}}$

Detta samband visar att aktiviteten för ett radioaktivt preparat avtager exponentiellt.
Fig. 7 Aktivitetens avtagande för ett radioaktivt ämne med halveringstiden $T_{1/2} = 1$ tim. Observera att i ett lin-log diagram åskådliggöres aktivitetens avtagande med en rät linje.

Absorberad dos – rađ

Man är ofta intresserad av att veta effekten av den joniserande strålningen på ett visst ställe av ett bestrålat objekt. Det kan t ex vara den biologiska effekten på ett visst organ i människorroppen. Den biologiska effekten beror bl a på mängden strålningsenergi som absorberas i det intressanta området.

Om man är intresserad av strålningseffekten kring en punkt P av ett bestrålat objekt, betraktar man ett litet volymselement ΔV kring punkten P. Den absorberade energin i volymselementet är skillningen mellan den infallande och utgående strålningsenergien, $\Delta E = E_{in} - E_{out}$, förutsatt att inga kärnreaktioner äger rum. Man definierar då den absorberade stråldosen i punkten P som:

$$\text{Absorberad dos} = \frac{\text{Absorberad energi i volymselementet } \Delta V}{\text{Massan av volymselementet } \Delta V}$$

eller uttryckt i symboler $D = \frac{\Delta E}{\Delta m}$.
Samband mellan aktivitet och halveringstid

Vi utgår från ett radioaktivt preparat med aktiviteten 100 mCi och vill veta vilken aktivitet det har efter en viss tid. Efter en halverings- tid har aktiviteten sjunkit till 50 mCi och efter ytterligare en halveringstid till 25 mCi osv enligt nedanstående tabell.

<table>
<thead>
<tr>
<th>Tid</th>
<th>Aktivitet</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100 mCi</td>
</tr>
<tr>
<td>1 $T_{1/2}$</td>
<td>100/2 = 50 mCi</td>
</tr>
<tr>
<td>2 $T_{1/2}$</td>
<td>50/2 = 100/2² = 25 mCi</td>
</tr>
<tr>
<td>3 $T_{1/2}$</td>
<td>25/2 = 100/2³ = 12,5 mCi</td>
</tr>
<tr>
<td>$t=N\cdot T_{1/2}$</td>
<td>$100/2^N$ mCi</td>
</tr>
</tbody>
</table>

Allmänt gäller att aktiviteten efter tiden $N \cdot T_{1/2}$ är lika med ursprungliga aktiviteten (vid $t=0$) dividerad med 2 upphöjt till $N = t/T_{1/2}$

dvs $A(t) = A(0)/2^N = A(0)/2^{t/T_{1/2}}$

Logaritmeras denna ekvation med naturliga logaritmer (elog) erhålls

elog $A(t) = e$log $A(0) - 0,693 \cdot \frac{t}{T_{1/2}}$ eloge

vilket omskrivet i exponentform blir

$A(t) = A(0) \cdot e^{0,693 \cdot t/T_{1/2}}$

Detta samband visar att aktiviteten för ett radioaktivt preparat avtager exponentiellt.
Fig. 7 Aktivitetens avtagande för ett radioaktivt ämne med halveringstiden $T_{1/2} = 1 \text{ tim}$. Observera att i ett lin-log diagram åskådliggöres aktivitetens avtagande med en rätt linje.

Absorberad dos - rad

Man är ofta intresserad av att veta effekten av den joniserande strålningen på ett visst ställe av ett bestrålat objekt. Det kan t.ex vara den biologiska effekten på ett visst organ i människokroppen. Den biologiska effekten beror bl.a på mängden strålningsenergi som absorberas i det intressanta området.

Om man är intresserad av strålningseffekten kring en punkt P av ett bestrålat objekt, betraktar man ett litet volymelement dV kring punkten P. Den absorberade energin dE i volymelementet är skillnaden mellan den infallande och utgående strålningsenergi, $dE = E_{in} - E_{out}$, förutsatt att inga kärnreaktioner äger rum. Man definierar då den absorberade stråldosen i punkten P som:

$$\text{Absorberad dos } = \frac{\text{Absorberad energi i volymelementet } dE}{\text{Hässan av volymelementet } dV}$$

eller uttryckt i symboler $D = \frac{AE}{Am}$.
Den absorberade dosen anges i den speciella enheten rad.

\[1 \text{ rad} = \frac{1}{100} \text{joule/kg} = \left[100 \text{ erg/g med äldre enheter} \right] \]

Fig. 8 Den absorberade dosen, \(D \), i punkten \(P \) hos det bestrålade objektet definieras som kvoten mellan \(\Delta E \) och \(\Delta m \), då \(\Delta E \) är den absorberade energin i volymselementet \(\Delta V \) kring punkten \(P \) med massan \(\Delta m = \Delta V \cdot \rho \).

Den absorberade dosen, \(D \), är definierad för alla typer av joniserande strålnings och alla slag av bestrålat material.

Relativ biologisk effekt - RBE

För att indikera att olika slag av strålningshar olika effekt på biologiskt material använder man i experimentella sammanhang begreppet relativ biologisk effekt. RBE-värdet definieras som förhållandet mellan en absorberad dos av röntgenstrålnings och den absorberade dos av något annat strålslag som erfordras för att producera samma biologiska effekt. Om vi t.ex. antar att en absorberad dos av 5 rad \(\alpha \)-strålning producerar samma biologiska effekt som en absorberad dos av 50 rad röntgenstrålning blir RBE-värdet för \(\alpha \)-strålningen 10.
Dosekvivalent - rem

I strålskyddssammanhang användes i stället för RBE-värdet en kvalitetsfaktor (Q) för att ange skilda strålningsslags olika biologiska betydelse. Om den absorberade dosen, D, uttryckt i rad multipliceras med kvalitetsfaktorn Q erhålls den så kallade dosekvivalenten, H, uttryckt i rem.

\[H \text{ (rem)} = D \text{ (rad)} \times Q \]

Av praktiska skäl tilldelas all α-strålning samt neutroner och protoner med energier upp till 10 MeV Q-värdet 10. Betastrålning, elektroner, röntgen och gammastrålning tilldelas Q-värdet 1,0.

Exposition - röntgen

En av de viktigaste metoderna för att mäta joniserande strålning grundar sig på dess förmåga attilda elektriskt laddade partiklar (joner) då den passerar genom luft. Genom att samlar upp de frigjorda joner kan man således bestämma den totala elektriska laddningen som frigöres.

![Diagram](image)

Fig. 9 Mätning av jonisationen ΔQ som orsakas av strålningen i den skuggade volymen ΔV mellan uppsamlingselektroderna.
Expositionen X är kvoten mellan ΔQ och Δm, där ΔQ är summan av de elektriska laddningarna av alla joner av ett tecken som produceras i luft, då alla elektroner som frigöres av fotonerna i ett volymselement ΔV vars massa är Δm fullständigt stoppas i luft.

Expositionen anges i den speciella enheten röntgen (R)

\[1 \text{R} = 2,58 \cdot 10^{-4} \text{ As/kg luft} = \left(\frac{1 \text{ ese}}{0,001293 \text{ g luft}} \right) \]

\[= \frac{1 \text{ ese}}{1 \text{ cm}^3 \text{ luft NTP med äldre enheter}} \]

Den absorberade dosen, D, i en punkt P i ett bestrålat medium kan bestämmas genom att en liten luftfyld kavitet införes i punkten P och jonisationen i denna kavitet mätas. Man kan därefter beräkna den absorberade dosen, D, i omdeelbar närhet av kaviteten.
BIOLOGISKA EFFEKTER AV JONISERANDE STRÄLNING

De biologiska effekterna av joniserande strålning beror i grunden på att strålningsenergin överförs till atomer eller molekyler i kroppens vävnader. Resultatet blir jonisation och därmed nedbrytning av biologiskt viktiga ämnen inom vävnadernas celler. Det fysikaliska jonisationsförloppet äger rum inom bräkdelens av en sekund. De biologiska effekterna av de sönderbrutna molekylerna uppträder emellertid ej förrän efter timmar, dagar ja tio mår.

Skälet till att absorberad stråldos definieras som energiabsorption per massenhet är att effekten av ett givet stråleslag (α, β eller γ-strålning) beror på hur mycket energi som absorberas inom vävnaden i det aktuella området. Den biologiska effekten är ofta direkt proportionell mot den absorberade dosen (linjärt samband), men dos-effekt-sambandet kan också anta andra former.

Fig. 10 Olika samband mellan absorberad dos och graden av biologisk effekt (t ex antalet inaktiverade celler i en bestrålad cellkultur).

Genetiska effekter

En vuxen människa innehåller omkring $4 \cdot 10^{13}$ celler av vilka många är högt specialiserade.
Dessa celler har alla utvecklats från en enda primär cell, den s k zygoten, som bildas när två könseller sammanmälter. Zygoten innehåller all nödvändig information för att kontrollera den vidare celldelningen och specialiseringen vilka leder till uppkomsten av en individ.

![Diagram](image)

Fig. 11 Illustration av hur mitos och meios upprätthåller konstant kromosomantal. Vid befruktningen sammansmälter könsellererna som varandra innehåller 23 kromosomer varvid det bildas en s k zygot med 46 kromosomer. Denna undergår sedan livlig celldelning (mitos) tills slutligen en ny individ uppkommer. I den fullvuxna individen bildas nya könseller genom s k meios. Genetiska effekter uppträder då de celler i gonaderna som bildar könsellerorna förändras. Somatiska effekter uppträder vid förändringar i individens övriga celler.

De s k arvsanlagen, genera, finns inlagrade i cellernas kromosomer och en enda kromosom innehåller tuseitals gener. Nyckelmolekylerna i genera är s k desoxiribonukleinsyror, DNA, vilka innehåller den genetiska informationskoden. En bestående förändring av en DNA-molekyl i en gen resulterar i förändringar av efterföljande celler eftersom kromosomer och genera blir exakt reproducerade vid celldelning. En sådan förändring kallas mutation.
Då levande vävnad utsättes för joniserande strålning bildas spår av jonpar inom cellerna varvid viktiga strukturer kan skadas. Vid direkt träff av en kromosom orsakar jonisationen ofta bestående förändringar i DNA-molekylerna och därmed förändras den genetiska kodgen. Absorberas strålningen i kromosomernas omedelbara närhet bildas så kallade radikaler, mycket reaktiva substanser som indirekt kan skada kromosomerna. Om förändringen av det genetiska materialet är så omfattande att cellen ej kan undergå fortsatt celldelning uppträder celldöd. Om cellen överlever återfinnes förändringen av DNA-molekylerna efter celldelningen också i den nybildade cellen.

![Diagram](image)

Fig. 12 Fördelning av jonisationen då en kromosom träffas av α, β och γ-strålning. Vid bestrålning av vattnet i cellen bildas fria radikaler t.ex. OH- som också påverkar kromosomerna.

Att bedöma de genetiska konsekvenserna vid bestrålning av en befolkningsgrupp är mycket svårt eftersom mutationer också uppträder spontant. Dessa mutationer beror till en del (2-20%) av den naturliga bakgrundsbestrålningen men till största delen beror de av andra orsaker än strålning.

I diskussionen av de genetiska konsekvenserna av joniserande strålning brukar man införa begreppet fördublingsdos, dvs den i varje individ absorberade dos som krävs för att hos en befolkningsgrupp höja den naturliga mutationsfrekvensen till det dubbla. Denna absorberade dos ligger någonstans mellan 15-150 rad.

Somatiska effekter

Sådana biologiska effekter av joniserande strålning som drabbar individen under dess livstid kallas somatiska effekter. Arten och graden av somatiska effekter beror på många faktorer. Bland de viktigaste är den tidsperiod under vilken bestrålningen pågår och hur stor del av kroppen som bestrålas.

![Graph](image)

Fig.13 Effekten av engångsbestrålning och långtidsbestrålning på medellivslängden som funktion av den totalt absorberade dosen. (Baserad på djurförsök)
Bestrålning under kort tidsrymd (engångsbestrålan-
ning) så att höga stråldoser erhålls är mindre
aktuell i miljövårdssammanhang. Detta kan emellan-
tid inträffa vid olyckssituationer vid accelerato-
er och i nukleära anläggningar. I tabellen nedan
beskrivs effekterna av helkroppsbestrålning under
kort tidsperiod. Det bör påpekas att de individu-
ella variationerna är stora och dessutom är effek-
ten betydligt mindre då endast en del av kroppen
bestrålas. Vid strålbehandling för att avlägsna
tumörer besträlas begränsade områden av kroppen
så att en absorberad dos i storleksordningen
1000-6000 rad erhålls under en relativt begrän-
sad tidsrymd.

Tabell 1

Sammanfattning av effekterna på människan som
resultat av kortvarig helkroppsbestrålning med
röntgen eller gammastrålning.

<table>
<thead>
<tr>
<th>Absorberad dos, rad</th>
<th>Effekt på människa</th>
</tr>
</thead>
</table>
| 0-25 | Inga omedelbart observerbara kli-
| | niska effekter. Fördröjda effekter
| | kan uppträda, men med mycket låg
| | frekvens. |
| 25-100 | Smärre övergående reduktion av
| | antalet lymfocyter och neutro-
| | filer i blodet. Bestrålade indivi-
| | der känner inget obehag utan
| | kan fortsätta sitt normala liv.
| | Fördröjda effekter kan uppträda
| | med mycket låg frekvens. |
| 100-200 | Bestrålade individer känner sig
| | trötta och illamående med uppkast-
| | ningar; vid mer än 125 rad inträf-
| | far detta i 20-25% av fallen. Re-
| | duktion av antalet lymfocyter och
| | neutrofiler i blodet med fördröjd
| | återhämtning. Fördröjda effekter
| | förkortar medellivslängden med 1%.
| | Återhämtning inom 3 månader, om
| | inga komplikationer tillstöter. |

forts.
<table>
<thead>
<tr>
<th>Absorberad dos, rad</th>
<th>Effekt på människa</th>
</tr>
</thead>
<tbody>
<tr>
<td>200-600</td>
<td>Den närmaste tiden efter bestrålningen illamående, kräkningar och diarré. Efter en latensperiod på ca 1-2 veckor uppträder häravfall, feber, blödningar och inflammationer i slemhinnorna. Om en total bestrålning med 300 rad inträffat, föreligger en 50%-ig risk för komplikationer med dödlig utgång inom 30 dagar. Övriga återhämtar sig inom 6 månader. Behandling kan eventuellt ge ökad överlevnadschans.</td>
</tr>
<tr>
<td>600-</td>
<td>Om den absorberade dosen är mer än 600 rad är det osannolikt att någon överlever. Behandling kan eventuellt ge ökad överlevnadschans.</td>
</tr>
</tbody>
</table>
Det i miljösammanhang intressanta fallet är långvarig bestrålning med mycket låg intensitet. Våra kunskaper om de biologiska effekterna vid låga stråldoser är mycket osäkra. Eftersom effekterna vid låga stråldoser är sällsynta är det svårt att få fram tillförlitliga experimentella data. Därför får man extrapolera från experimentella erfarenheter vid absorberade doser som är högre än 100 rad till så låga doser som 1 rad. Detta är en vanskelig procedur eftersom man ej med säkerhet vet att dos-effektsambandet är linjärt vid låga stråldoser.

![Diagram](image)

Fig. 14 Extrapolering av dos-effekt-sambandet från 100 rad till låga stråldoser. En linjär extrapolation överskattar effekten om ett tröskelvärde föreligger.
De somatiska effekterna vid låga absorberade doser uppträder först efter lång tid, upp till 20 år. Om hela kroppen blir besträlat kan man hotera en ökad frekvens av leukemi, sköldkörtelcancer och specifika tumörer. I en befolkning bestående av 1 miljon individer som alla utsättes för kontinuerlig bestrålning resulterande i en årlig absorberad dos av 1 rad skulle som följd av bestrålningen per år kunna uppträda 20 fall av leukemi, 10–20 fall av sköldkörtelcancer och 50 fall av andra maligna sjukdomar samt 20 fall av andra skador. Efter en engångsbestrålning som ger 1 rad förväntar man sig att samma antal fall uppträder utspridda under en period 10–20 år efter bestrålningen. Dessa uppskattningsar är emellertid baserade på effekter orsakade med hög absorberad dos, varvid dos-effekt-sambandet extrapoleras linjärt ned till låga absorberade doser. Om ett tröskelvärde föreligger, leder en sådan uppskattning till att effekterna från en absorberad dos av 1 rad betydligt överskattas.

Sannolikheten att drabbas av en allvarlig sjukdom eller olyckshändelse vid olika åldrar åskådliggöres i fig. 15. Härav framgår att den extra sannolikheten att drabbas av leukemi vid en bestrålning med 1 rad/år ligger lägre än den naturliga frekvensen för leukemi.

![Diagram](image_url)

Fig. 15 Sannolikheten att drabbas av en allvarlig sjukdom eller olyckshändelse vid olika åldrar. Den övre kurvan innefattar alla dödsorsaker inklusive trafikolyckor. Den streckade linjen utgör den extra risk som eventuellt kan föreligga att drabbas av leukemi från en kontinuerlig bestrålning med 1 rad/a mellan 18–60 år.
MÄNNISKANS NATURLIGA STRÄLNINGSMILJÖ

Människan har som nämnts i inledningen i alla tider utsatts för bestrålning från världsrymden och från naturligt radioaktiva ämnen i mark och luft samt från naturligt radioaktiva ämnen som via födan kommit in i kroppen (fig. 1).

Detta är den strålningsmiljö som vi måste betrakta som vår normala och med den som bakgrund måste vi se vår tids tillskott av joniserande strålning.

Kosmisk strålning

Den primära kosmiska strålningen som höror från den yttre rymden och från solens består huvudsakligen av protoner och α-partiklar samt kärnor av tyngre element som t ex kol, kväve och syre. Då dessa partiklar träffar jordatmosfären produceras sekundär kosmisk strålning, som består av partiklar (bl a neutroner) och elektromagnetisk strålning.

Den kosmiska strålningen ger människan i medeltal en absorberad dos på 30 mrad per år (vid havsnivå).

Den kosmiska strålningen ökar med höjden över havet. Vid 55°N är dosen på 5 km höjd ca 300 mrad/år, vid 10 km (jetplans höjd) ca 2000 mrad/år och vid 20 km ca 5-6 rad/år.

Naturlig radioaktivitet i omgivningen

Då den materia av vilken universum nu består först bildades, fanns med all sannolikhet ett mycket stort antal radioaktiva ämnen. Under de miljarder år som förflutit har alla de då bildade radioaktiva ämnena med kort halveringstid försvunnit. Kvar finns radionuklider med lång halveringstid t ex 40K (Kalium-40; halveringstid 1,27· 109 år), 238U (Juran-238; 4,56· 109 år) och 232Th (Thorium-232; 1,39· 1010 år). Dessa ämnen förekommer i jord, sten, byggnadsmaterial som tegel och betong etc. och orsakar en yttre bestrålning av människan.

Dosbidraget uppgår i Sverige till ca 50 mrad/år. Det finns emellertid områden på jordytan där markens innehåll av naturligt radioaktiva ämnen är avsevärt högre än exempelvis i Sverige. På dessa platser, bl a ett distrikt i Indien och några områden i Sydamerika, har den från marken och luften kommande gammastrålningen visat sig ge befolkningen där ett stråldosbidrag från flera hundra upp till tusen mrad per år.
Radioaktiva ämnen i kroppen

De mest komplexa källorna till naturlig bestrålning av människan är de som orsakas av radioaktiva ämnen som kommer in i vår föda eller som, p.g.a. att de förekommer i gasform, når oss via den luft vi andas.

0,0118% av allt kalium utgöres av 40K. 40K från marken når via växter och djur människan. En vuxen person på 70 kg innehåller ca 140 g kalium, vilket innebär att i vår kropp sönderfaller varje sekund 5 000 40K-kärnor. Det stråldosbidrag till människans mjukvävnad som orsakas av 40K uppgår till ca 20 mrad per år.

Fastän både uran och torium är betydelsefulla byggestenar i jordkorpan deltar inget av dessa element i nämnvärd utsträckning i växternas metabolism. Emellertid är både uran och torium "föräldrar" i en komplex kedja av "dotter"-produkter. Med hänsyn till bestrålningen av människan är 226Ra (radium-226) och 228Ra (radium-228) av speciell betydelse, eftersom radium kemiskt sett liknar kalcium och därför anrikas i skelettet.

226Ra sönderfaller till ädelgasen 222Rn (radon-222; halveringstid 3,8 dagar). Då denna ädelgas diffunderar upp i atmosfären (1 300 MCl/år) sönderfaller den i sin tur och dess dotterprodukter fastnar på dammpartiklar etc., som tillsammans med radonet självt inandas. Vid bestrålning av luftvägarna (bronkerna) och lungorna ger radon och dess dotterprodukter en absorberad stråldos av flera hundra mrad per år.

En av 226Ra:s sönderfallsprodukter är 210Po (bly-210), som har en halveringstid på 21 år. Den bildas i atmosfären (0,62 MCI/år), deponeras på jordytan och tas upp av växtligheten. Som ett exempel kan nämnas att 210Po (polonium-210), som är dotter till 210Pb, frigörs från tobaken vid rökning (ca 0,04 pCi/cigarrrett) och orsakar bestrålning av luftvägarna och lungorna. Även om fenomenet troligen är av mindre betydelse illustrerar det komplexiteten i det sätt, på vilket naturligt radioaktiva element uppför sig i de ekologiska system av vilka vi själva är en del.

I alla levande varvelser finns dessutom en radioaktiv kolisotop 14C (kol-14), som naturen självt ständigt nyproducerar genom den kosmiska strålningens reaktioner med kväve i atmosfären. 14C reagerar kemiskt med luftens syre och bildar koldioxid, som sedan via växternas assimilation och våra livsmedel når människan. Det stråldosbidrag som denna naturliga 14C-aktivitet ger oss är emellertid ringa, av storleksordningen 1 mrad/år.
Om vi nu försöker summera de olika bidragen så finner vi att för den genomsnittlige världsmänsborgaren det naturliga stråldosbidraget per år uppgår till ungefär 100 mrad. (Tabell 2) Medelvärdet för den svenska befolkningen torde också ligga i närheten av denna siffra. Denna naturliga bestrålning har sannolikt varit oförändrad sedan långt tillbaka i tiden; vissa komponenter har närmast varit något större förr än vad de är idag. Det är också viktigt att observera hur de naturliga stråldosbidragen varierar från plats till plats på jordytan. Det finns som nämnts områden där den naturliga bestrålningen i alla tider varit 10 till 15 gånger större än det angivna genomsnittsvärdet 100 mrad. En viktig frågeställning i detta sammanhang blir då, om någon biologisk effekt kunnat iakttagas på innevånarna i dessa områden. För dagen är svaret, att man åtminstone inte hittills observerat någon sådan. Ett flertal undersökningar har utförts för att försöka analysera några stora grupper av denna typ, men det har visat sig vara ett mycket besvärligt företag, dels därför att kraven på godtagbar jämförelsebefolkning är svåra att uppfylla och dels på grund av de mycket stora grupper som erfordras, för att statistiskt hållbara slutsatser skall kunna dras.
Tabell 2

Människans naturliga bestrålning i "normal"-områden.
(Betydande lokala variationer förekommer.)

<table>
<thead>
<tr>
<th>Strålkälla; typ av strålning</th>
<th>Absorberad dos (mrad) per år i mjukvävnad</th>
<th>benvävad</th>
<th>benmärg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yttere bestrålning:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kosmisk strålning;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(laddade partiklar; γ)</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Omgivningens radioaktivitet (jord, byggnadsmaterial, luft, etc); (γ)</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Inre bestrålning:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40K; (β+γ)</td>
<td>19</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>226Ra; (α)</td>
<td>0,06</td>
<td>1,2</td>
<td>0,15</td>
</tr>
<tr>
<td>228Ra (α)</td>
<td>0,1</td>
<td>2,0</td>
<td>0,25</td>
</tr>
<tr>
<td>210Po; (α)</td>
<td>0,04</td>
<td>0,9</td>
<td>0,1</td>
</tr>
<tr>
<td>222Rn + sänderfallsprodukter i luft; (α)</td>
<td>0,3</td>
<td>0,3</td>
<td>0,3</td>
</tr>
<tr>
<td>14C; (β)</td>
<td>0,7</td>
<td>0,9</td>
<td>0,7</td>
</tr>
<tr>
<td>Total naturlig stråldos per år (mrad)</td>
<td>100</td>
<td>91</td>
<td>97</td>
</tr>
</tbody>
</table>

x) Gäller även för speciella organ såsom gonader och sköldkörtel.
ANVÄNDNINGEN AV JONISERANDE STRÄLNING OCH RADIOAKTIVA ÄMnen INOM SJUKVÄRDEN

Röntgendiagnostiken utgör en viktig del av sjukvården då det gäller att undersöka tillståndet hos olika inre organ. Det aktuella området i kroppen genomlyses med röntgenstrålning vilken absorberas i olika hög grad av olika vävnader. På en röntgenfilm placerad bakom patienten framträder olika vävnader och organ med olika svärtningsgrad (se fig.16).

![Diagram](image)

Fig.16 Vid röntgenundersökning av en hand placeras denna på en kassett med röntgenfilm och genomlyses med röntgenstrålning. Efter framkallning av filmen framträder handens skelett som de ljusaste partierna eftersom det absorberar röntgenstrålningen i högre grad än mjukvävnad.

Den absorberade strålenden som erhålls vid olika undersökningar varierar kraftigt beroende på undersökningens omfattning (antal bilder) och på utrustningens tekniska standard. I tabell 3 nedan anges storleksordningen av den stråldos man kan förvänta vid respektive undersökningar dels till huden på det bestrålade stället, dels till den aktiva benmängen och dels till gonaderna för män respektive kvinnor.
Tabell 3

Patientbestrålning per undersökning vid olika typer av röntgendagnostiska undersökningar.

<table>
<thead>
<tr>
<th>Typ av undersökning</th>
<th>Huddos rad</th>
<th>Benmärgsdos rad</th>
<th>Gonaddos rad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skärmbildsundersökning av lungorna</td>
<td>0,6-1,4</td>
<td>0,05</td>
<td>0,001 M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,002 K</td>
</tr>
<tr>
<td>Lungröntgen</td>
<td>0,4-0,9</td>
<td>0,04</td>
<td>0,002 M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,004 K</td>
</tr>
<tr>
<td>Magröntgen med bariumkontrast</td>
<td>0,9-1,7</td>
<td>0,08</td>
<td>0,01 M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,03 K</td>
</tr>
<tr>
<td>Tjocktarmsröntgen med bariumkontrast</td>
<td>0,4-1,5</td>
<td>0,40</td>
<td>0,3 M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,5 K</td>
</tr>
<tr>
<td>Arm- och handröntgen</td>
<td>0,1-0,3</td>
<td>< 0,01</td>
<td>< 0,01</td>
</tr>
<tr>
<td>Ben- och fotröntgen</td>
<td>0,1-0,4</td>
<td>< 0,01</td>
<td>< 0,01</td>
</tr>
<tr>
<td>Tandröntgen</td>
<td>0,4-3,4</td>
<td>< 0,02</td>
<td>0,0005 M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0001 K</td>
</tr>
</tbody>
</table>

M män
K kvinnor
Isotopdiagnostiken (eller som det korrekt borde kallas diagnostisk nuklearmedicin) är en annan viktig gren av sjukvården. Man använder härvid radionuklider som spårämnena för att undersöka funktionen hos olika organ såsom sköldkörteln, levern, njurarna, hjärnan, lungorna m fl. Så användes t ex den radioaktiva jodisotopen ^{131}I för att undersöka funktionen hos sköldkörteln. Den person som skall undersökas får dricka en Na^{131}I-lösning. Efter en viss tid placeras personen under en scintillationsdetektor (se fig.17) som registrerar den γ-strålning som utsändes av det ^{131}I som ackumulerats i sköldkörteln. Låter man detektorn avsöka ett område över sköldkörteln och omvandlar den registrerade pulsfrekvensen till svärtning på en bild, erhåller man ett s k scintigram. Detta visar hur det radioaktiva ämnet fördelat sig i organet och man kan hänvis till information om organets storlek och form och om någon del därav inte fungerar tillfredsställande.

Fig.17 Vid upptagning av ett s k scintigram av sköldkörteln låter man en scintillations detektor avsöka det aktuella området och den registrerade pulsfrekvensen omvandlas till svärtning på en bild som kallas scintigram.
Radioterapi, dvs bestrålning med joniserande strålnings avsikt att påverka ett sjukligt tillstånd, användes inom sjukvården främst vid behandling av tumörsjukdomar. Den totalt absorberade dosen i behandlingsområdet är omkring 2000-6000 rad fördelat på 3-6 veckor beroende på typen av behandling.

Genetiskt signifikant dos

Användningen av joniserande strålnings och radioaktivt ämnen inom sjukvården medför att man som patient erhåller en absorberad dos som adderas till den som erhålls från naturliga och andra strålkällor. Man beräknar för den medicinska bestrålningen en viktig stråldos som kallas genetiskt signifikant dos, vilken utgör en tänkt absorberad stråldos som, om den erhölls av varje individ, skulle förväntas producera totalt samma genetiska effekt på befolkningen som de verkliga stråldoser enskilda individer erhåller. Utgångspunkten för beräkningen av den genetiskt signifikanta dosen är den verkliga gonaddosen, vilken viktas med en faktor som tar hänsyn till det antal barn den bestrålade individen senare i sitt liv kan förväntas få jämfört med medelmedborgaren. Detta innebär att äldre personer inte bidrager nämnvärt till den genetiskt signifikanta dosen (se fig. 18).

Fig. 18 Exempel på fördelningen av bidraget från olika åldersgrupper till den totala genetiskt signifikanta dosen.
I tabell 4 nedan anges den genetiskt signifikanta dosen från röntgendagnostiska undersökningar, isotopdiagnostiska undersökningar och radioterapi.

Tabell 4

Den genetiskt signifikanta dosen från olika användningar av joniserande strålning och radionuklider inom sjukvården i Sverige.

<table>
<thead>
<tr>
<th>Röntgendiagnostik mrad/a</th>
<th>Isotopdiagnostik mrad/a</th>
<th>Radioterapi mrad/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>0,05</td>
<td>3</td>
</tr>
</tbody>
</table>

Som framgår av tabellen ger röntgendiagnostiken den högsta genetiskt signifikanta dosen inom sjukvården, och som vi senare skall se även den högsta artificiella stråldosen till befolkningen. Uppgifterna för röntgendiagnostik och radioterapi i tabell 4 baserar sig på ganska gamla mätdata. Dosbidraget från röntgendiagnostiken har idag möjlichen minskat medan bidraget från radioterapi förmodligen är oförändrat.
RADIONUKLIDPRODUKTION I KÄRNFRAKTFÄLT REAKTORER OCH UTSLÄPP FRÅN KÄRNTekNISKA ANLÄGGNINGAR

Inledning

Fissionsprocessen

I kärnreaktorn utgör fissionsprocessen grunden för energifrigörelsen. Fissionen eller med ett svenskt uttryck kärnklyvningen, innebär att en atomkärna klyvs i två något olika tunga delar. Vid klyvningen av tunga kärnor kan stora energimängder frigöras. Vanligen åstadkommes fission med hjälp av långsamma eller termiska neutroner. Bland alla nuklider i naturen kan denna s k termiska fission endast åstadkommas i 235U (uran-235) som till ca 0,7% ingår i naturligt uran.

![Fission diagram](image)

Fig. 19 Vid fissionsprocessen splittras en tung atomkärna i två något olika tunga delar (fissionsfragment). Härvid utsändes i genomsnitt 2-3 neutroner samt γ-strålning. I en reaktor omvandlas fissionsfragmentens rörelseenergi till värmeenergi i bränsleelementen genom uppbromsningen i dessa.
Fissionens praktiska betydelse betingas av två karakteristiska egenskaper. För det första utvecklas en stor energimängd vid kärnklyvningen, för det andra utsändes vid varje kärnklyvning i genomsnitt 2-3 neutroner. Dessa neutroner kan i sin tur klyva ytterligare kärnor, osv. Principiellt finns alltså möjligheten av en kedjereaktion, som mycket snabbt skulle kunna klyva alla kärnor i en klump uran och frigöra enorma mängder energi. Om denna kedjereaktion förlöper hastigt, sker en våldsam explosion i form av en detonerande bomb, men om reaktionen kontrolleras så att den förlöper med mättlig hastighet, ger detta en energiproducerande reaktor. Båda dessa alternativ har förverkligats i praktiken.

![Diagram](image)

Fig. 20 Principskiss över ett kärnkraftverk. Den värmeenergi som erhålls då fissionsfragmenten bromsas upp i bränsleelementen utnyttjas via en värmeväxlare för produktion av elektrisk energi i en ångturbin. Jfr appendix 2.

Fissionsfragmenten är instabila och sönderfaller under utsändning av bl a β-partiklar och γ-strålning. Även de därvid bildade dotterkärnorna, dotterdöttrarna etc är vanligen radioaktiva. Man erhåller sålunda en sönderfallskedja som genom β-sönderfall passerar ett flertal grundämnen tills en stabil slutprodukt nås, t ex

$$^{137}_{55}I \rightarrow^{137}_{53}Xe \rightarrow^{137}_{54}Cs \rightarrow^{137}_{56}Ba^{m} \rightarrow^{137}_{56}Ba \text{ (stabil)}$$

$$^{90}_{36}Kr \rightarrow^{90}_{37}Rb \rightarrow^{90}_{38}Sr \rightarrow^{90}_{39}Y^{m} \rightarrow^{90}_{39}Y \rightarrow^{90}_{39}Zr \text{ (stabil)}$$
Det är de långlivade komponenterna i denna fördröjda radioaktivitet, som utgör ett problem i samband med avfallet från kärnreaktorer och nedfallet från kärnvapenproven.

Utsläpp från kärntekniska anläggningar under normala betingelser

Neutroener, som i stor mängd finns i och runt reaktorhärden förändrar förut stabila element till radioaktiva genom \(k\) neutronaktivering. Detta gäller bl.a. för naturliga mineralsalter i kylvattnet samt materialet i förhållande. Då kylvattnet släpps ut i det närliggande vattendraget, har det inte bara blivit varmare utan kan också innehålla mätbara mängder reaktorproducerade radioaktiva ämn. Bland de radioaktiva korrosionsprodukterna bör särskilt nämnas \(^{65}\)Zn, \(^{64}\)Cu, \(^{60}\)Co, \(^{59}\)Co, \(^{58}\)Te, \(^{57}\)Fe, \(^{54}\)Mn och \(^{51}\)Cr. Av de radionuklidian som kan bildas genom neutronaktivering av naturliga mineralsalter som finns i kylvattnet kan \(^{12}\)P, \(^{24}\)Na, \(^{35}\)S och \(^{3}\)H nämnas.

I bearbetningsanläggningarna för reaktorelement behandlas mycket stora mängder radioaktivt material. Beträffande det luftburna avfallet så medger den idag tillämpade tekniken en effektiv avskiljning av t.ex. jod medan ädelgaser som t.ex. krypton-85 släpps ut i atmosfären. Tritium upp träder också i avfallet och släpps ut i antingen gas- eller våtskeform. Huvuddelen av aktiviteten i de radionuklidföraren våtskorna som utnyttjats i anläggningen koncentreras slutligen till små volymer och lagras. Ett visst utsläpp av radionuklidian kan dock ske.
Ett exempel på storleken av de vattenburna utsläppen från en mycket stor bearbetningsanläggning för bränsleelement (Windscale, England) ges i följande tabell.

Tabell 5

<table>
<thead>
<tr>
<th>Radionuklid</th>
<th>Utsläppets storlek (medelvärden under 1964-1965) Ci/månad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rutenium-106</td>
<td>1 800</td>
</tr>
<tr>
<td>Cesium-137</td>
<td>105</td>
</tr>
<tr>
<td>Strontium-90</td>
<td>90</td>
</tr>
<tr>
<td>Strontium-89</td>
<td>15</td>
</tr>
<tr>
<td>Rutenium-103</td>
<td>125</td>
</tr>
<tr>
<td>Cerium-144</td>
<td>280</td>
</tr>
<tr>
<td>Zirkonium-95</td>
<td>1 600</td>
</tr>
<tr>
<td>Niob-95</td>
<td>2 300</td>
</tr>
<tr>
<td>Sällsynta jordarter m fl</td>
<td>80</td>
</tr>
<tr>
<td>Total β-aktivitet</td>
<td>4 800</td>
</tr>
<tr>
<td>Total α-aktivitet</td>
<td>30</td>
</tr>
</tbody>
</table>

Tabellen avser att ge en grov bild av utsläppets storlek och sammansättning. Mycket stora variationer förekommer från anläggning till anläggning och fortlöpande ansträngningar görs för att minska utsläppens radioaktivitet.

Avfallsdisponering

Det höggradigt radioaktiva avfallet från kärnenergianläggning utgöres av förbrukade jonbytarmassor, koncentrat av vätskeformigt avfall, kasserade reaktordetaljer etc. Den slutliga disponeringen av detta avfall utgör ett besvärligt problem. Radioaktivitetskonzentrationerna är i medeltal av störleksordningen 100 000-tals Ci per m³. Detta medför att värmeutvecklingen ibland blir så hög att avfallet ståndigt måste kylas. Hundratals ton av sådant högaktivt avfall finns t ex idag lagrat enbart i USA. När det gäller platsen för den slutliga disponeringen av det fasta radioaktiva avfallet har man försökt med nedgrävning på speciella inhägnade områden efter ingjutning av avfallet i betongbehållare. En annan metod för slutlig disponering har varit dumpning i havet. Denna metod har framförallt använts för s k medelaktivt avfall.
På senare år har man studerat en metod som går ut på att fixera det radioaktiva avfallet i ett glasliknande material, som sedan inneslutes i stålbehållare. Dessa kan därefter placeras t ex i övergivna saltgruvor, vilka är fria från vatten och förväntas vara det också i framtiden. När det radioaktiva avfallet väl deponerats djupt ner i saltgruvorna är risken mycket liten för att avfallet skall kunna läcka ut i omgivningen till skillnad från de båda andra metoderna.

Utsläpp från kärntekniska anläggningar vid katastrofsituationer

RADIONUKLIDPRODUKTION OCH RADIOAKTIVT NEDFALL VID KÄRNLADDNINGSEXPLODIONER

De stora energimängder som frigöres vid fissionsprocessen kan förutom till elkraftproduktion även utnyttjas i massförstörelsevapen. Det första kärnvapnet konstruerades under andra världskrigets slutskede. Vapen av denna typ dödade uppskattningsvis 100.000 människor, skadade minst lika många samt utplånade stora delar av städerna Hiroshima och Nagasaki den 6 resp 9 augusti 1945.

De först konstruerade kärnvapnen byggde på fissionsprocessen, dvs en klyvning av en uran- eller plutoniumkärna. Denna process har beskrivits i föregående kapitel. Det är emellertid också möjligt att utvinna energi genom att förena två lättare kärnor till en tyngre (fusion). Ett exempel är reaktionen mellan väteisotopena deuterium (2H) och tritium (3H). En sådan reaktion kan åstadkommas om reaktionsblandningen upphettas till en temperatur av ca 100 milj °C. Detta är bakgrunden till den ofta använda beteckningen termonukleär reaktion.

![Diagram of fusion reaction](image)

Fig. 21 Fusionsprocessen. Energi frigöres då två lättare kärnor kombineras till en tyngre.

Fusionsprocessen har sedan 1952 utnyttjats i kärnvapen ("våtebomber"). Här har den erforderliga höga starttemperaturen åstadkommits med hjälp av en fissionsläddning.
Man kan för närvarande ej styra och utnyttja fusionsprocessen i en fusionsreaktor på samma sätt som fissionen.

Kärnvapenexplosioner i atmosfären

De radionuklider som bildas vid sprängningen av en fissionsladningen ("atombomb") är av samma typ som avfallsprodukterna från en kärnreaktor, dvs fissionsprodukter och neutronaktiveringsprodukter. Aktiveringsprodukterna bildas i bombmaterialet, marken eller vattnet under explosionsstålet, luften, etc.

Vid en tänkt ren fusionsexplosion erhålls inga fissionsprodukter, utan endast aktiveringsprodukter som 3H och 14C (tabell 5). Vid en våtebombs-explosion frigöres dock fissionsprodukter från den startande fissionsladningen.

Genom att ombra ett våtebomb med ett hülje av 238U erhålls en s k "superbomb" vilken producerar väl-diga mängder fissionsprodukter. Det var bomber av denna typ som testades i atmosfären åren 1961-62.

Tabell 6
Reaktionsprodukter vid en 10 Mton kärnexplosion. Enskilda explosioner kan uppsatta ganska stora avvikelser från dessa värdet.

<table>
<thead>
<tr>
<th>Reaktionsprodukt</th>
<th>Fissionsladning ("atombomb")</th>
<th>Fusionsladning ("våtebomb")</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antal neutroner</td>
<td>$2,2 \cdot 10^2$</td>
<td>$1,45 \cdot 10^2$</td>
</tr>
<tr>
<td>90Sr-aktivitet(Ci)</td>
<td>$1,03 \cdot 10^6$</td>
<td>-</td>
</tr>
<tr>
<td>137Cs- " ("</td>
<td>$1,73 \cdot 10^6$</td>
<td>-</td>
</tr>
<tr>
<td>14C- " ("</td>
<td>$2,34 \cdot 10^5$</td>
<td>$1,49 \cdot 10^6$</td>
</tr>
<tr>
<td>3H- " ("</td>
<td>-</td>
<td>$6,67 \cdot 10^7$</td>
</tr>
</tbody>
</table>
Det är framför allt laddningsstyrkan som avgör med vilken hastighet och på vilket sätt de vid en explosion i atmosfären bildade radionukliden- na når oss.

Fig. 22 Kärnladningar i kiloton-klassen som detoneras nära jordytan avgör vanligtvis sina radioaktiva produkter i troposfären inom vilken radionukliden sprids och faller ner på jordytan under en period av några veckor. Kärnladningar i megaton-klassen injicerar sin största mängd radioaktiva produkter i stratosfären. Efter en tid på upp till flera år deponeras detta radioaktiva material som globalt nedfall på det halvklot där explosionen skett.

Fredlig användning av kärnladningsexplosioner

Rent tekniskt är det möjligt att använda kärnladdingar i stället för konventionella sprängämnen vid t ex kanal- och hamnbyggen. Inom det amerikanska "Plowshare" (= plogbill-programmet har man bl a studerat möjligheterna att spränga en ny kanal tvärs igenom Panamaöset. Tanken är att ersätta traditionell jordförflyttningsteknik (inklusive kemiska sprängämnen) med kärnladningar vars spräng- kraft i så stor utsträckning som möjligt åstadkommes via fusionsladdningar - detta för att göra den ofrånkomliga bildningen av radionuklider så liten som möjligt.
Sprängningar vid olje- och gaskällor kan öka berggrundens genomsläpplighet för oljan resp. gasen och därigenom göra utvinningen mera ekonomiskt lönande. I de försök där kärnladdningar använts för ändamålet har man emellertid fått en så betydande radioaktiv förorening av gasen från en gaskälla, att den ännu inte kunnat användas för hushållsbruk.

De direkta kostnaderna för olika fredliga sprängningsarbeten torde kunna reduceras genom utnyttjandet av kärnladdningar. Varken problemen med den radioaktiva kontamineringen eller de seismiska effekterna är ännu tillräckligt utredda för att man skall kunna genomföra ett sådant program idag.
Radionuklidspredning från satelliter

Då joniserande strålning bromsas upp i materia överförs strålningsenergin slutligen till värme. Denna värmeenergi kan utnyttjas direkt eller omvandlas till elektrisk eller mekanisk energi med hjälp av lämpliga anordningar.

Använda man en långlivad radionuklid som strålkälla kan man t ex genom att utnyttja termoelement konstruera ett radionuklidbatteri som under lång tid levererar elektrisk energi utan att bränslet behöver ersättas.

Fig. 23 Schematisk framställning av hur strålningsenergin från en långlivad radionuklid omvandlas till värme och sedan med hjälp av termoelement omvandlas till elektrisk energi. Ett termobatteri består av en kedja av sammanlödda trådar av metallerna 1, 2, 1 ... med varannat lödställe varmt och varannat kallt.

Radionuklidbatterier användes som kraftkällor i bl a satelliter och andra rymdfarkoster. Om dessa av någon anledning brinner upp vid återinträdet i jordatmosfären frigöres det radioaktiva ämnet och deponeras så småningom på jordytan.

I april 1964 då radionuklidkraftkällan SNAP-9A brann upp i övre atmosfären över Indiska oceanen frigjordes 17 kCi plutonium-238 (85 g). Eftersom
det skedde på hög höjd och plutonium-238-oxiden bildade ett ytterst fint stoff, deponeras det mycket långsamt. Mätningar av plutonium-238-koncentrationen i atmosfären som utfördes under 1967 visade att det då fanns 3 kCi (15%) över norra halvklotet och 8 kCi (45%) över södra, medan omkring 6 kCi (40%) hade deponerats på jordytan.

Tillförseln av plutonium-238 från SNAP-9A resulterade i en medelaktivitetskoncentration i luften under åren 1965-1968 av storleksordningen 10^{-5} pCi/m3. Eftersom plutonium-238 är en α- emitterande långlivad radionuklid med hög radiotoxicitet får luften vi andas högst innehålla $2 \cdot 10^{-2}$ pCi/m3.

Problemst måste redan nu beaktas så att inte större mängder av t ex plutonium-238 tillåts brinna upp vid återintrådet av satelliter och andra rymdfarkoster i atmosfären.

Liknande radionuklidbatterier har emellertid återinträtt i atmosfären utan att brinna upp. Sålunda exploderade en vädersatellit i maj 1968 ovanför Californiens kust och i oktober samma år kunde man bärga det oskadade radionuklidbatteriet.

I april 1970 störtade en annan radionuklidkälla med plutonium-238 i Stilla havet utan att förstöras.
Vi har i de föregående kapitlen redogjort för hur radioaktiva ämnen kan produceras och frigöras i vår omgivning. Frågan är nu på vilket sätt de når oss och i vilken utsträckning de bidrar till vår bestrålning.

Luftburens radioaktivitet från kärnladdningsexplosioner, reaktordrift etc. deponeras med nederbörderna på jordytan där radionukliden kan tas upp av växter och djur.

Avfallsvattnen från kärntechniska anläggningar kan tillföra recipien ten radioaktivt material som tas upp av växter och djur i vattnet.

Det radioaktiva material som deponeras i vår omgivning bidrar dels med en utifrån kommande bestrålning och dels med en inre bestrålning från de radionuklilder som via luft, vatten och föda tillföres vår kropp.

Fig.24 visar schematiskt några olika vägar genom vilka radioaktivt material transporterar in i oss.

Samtliga radionuklilder som deponeras på jordytan bidrar mer eller mindre till den externa bestrålningen medan endast ett begränsat antal har betydelse som källor för vår inre bestrålning. Det finns en rad faktorer som påverkar de enskilda radionuklildernas betydelse för den inre bestrålningen.

1. Dess produktionsannolikhet och fysikaliska halveringstid.
 Radionuklilder som med stor sannolikhet produceras vid fissionsprocessen och har lång halveringstid är t ex zirconium (95Zr), rutenium (106Ru), jod (131I), cesium (137Cs), strontium (90Sr) och barium (144Ba).

2. Den hastighet med vilken de går in i näringskedjorna efter att ha deponerats på jordytan.

3. Den grad i vilken de går in i födoämnen av animaliskt ursprung (husdjur). Strontium (90Sr), cesium (137Cs) och jod (131I) överföres relativt snabbt till mjölk och cesium även till kött.

4. Den grad i vilken de tas upp i människans magtarmkanal. Cesium (137Cs), jod (131I) och strontium (90Sr) upptas lätt medan sällsynta jordarter, aktinider och ädla metaller absorberas i mycket ringa utsträckning. Alla radionuklilder som ingår i våra födoämnen bidrar till bestrålningen av mag-tarmkanalen oavsett hur effektivt de upptas av kroppen.
Fig. 24 Schematisk framställning av hur artificiella radionuklider som släpps ut i omgivningen på olika sätt när människan.
5. Den andel av radionukliderna som deponeras i vissa organ i människan och den tid under vilken de kvarstannar i dessa organ. Strontium (90Sr) deponeras i benstommen och stannar kvar där i åratal. Cesium (137Cs) fördelas i hela kroppen och huvuddelen blir kvar med en biologisk halveringstid av några månader. Jod (131I) koncentreras till sköldkörteln, men p.g.a. den fysikaliska halveringstiden (8 d) är 131I av global betydelse endast under de korta tidsperioder då färskt nedfall förekommer. Vid kontinuerligt utsläpp från reaktorstationer har 131I däremot betydelse för bestrålningen av den lokala befolkningen.

Till följd av ovannämnda faktorer är följande radionuklider av störst betydelse för människans inre bestrålning:

1. Strontium-90 (och strontium-89 i färskas fissionsprodukter)
2. Cesium-137
3. Jod-131
4. Kol-14

Det ökande utnyttjandet av fissionsreaktorer och radionuklidbatterier för energiproduktion gör att uppmärksamheten också måste riktas mot radionuklider som:

5. Tritium
6. Krypton-85
7. Plutonium-239
8. Plutonium-238, polonium-210 m fl

Vi skall här redogöra för betydelsen av dessa radionuklider var för sig.

1. Strontium-90 (90Sr)

Betydelsen av 90Sr i det radioaktiva nedfallet från kärnvapenproven uppmärksamades på ett tidigt stadium. För det första produceras 90Sr i betydande utsträckning vid fissionsprocessen, för det andra är dess fysikaliska halveringstid lång (28 år) och för det tredje uppvisar ämnet kemiskt sett stora likheter med kalciom och byggs följaktligen in i skelettet och blir kvar där under betydande tidsperioder. Vid kärnvapenproven har hittills totalt ca 17 MCi 90Sr bildats. P.g.a. fysikaliskt sönderfall har denna aktivitet år 1970 reducerats till ca 14 MCi. Den allra största delen av detta har nu deponerats på jordytan. I Sverige finns idag ca 40 nCi 90Sr per m2 (år 1970).
2. Cesium-137 (\(^{137}\)Cs)

Förutom \(^{90}\)Sr är \(^{137}\)Cs den radionuklid i vår omgivning som man studerat mest intensivt. \(^{137}\)Cs bildas vid fissionsprocessen i relativt stor utsträckning och dess halveringstid är lång (30 år). Kärnvapenproven har hittills frigjort ca 27 MCi \(^{137}\)Cs; i Sverige finns idag ca 64 nCi \(^{137}\)Cs per m\(^2\) (1970). Ämnet når oss via kött, mjölk, grönsaker, säd etc, upptas effektivt i mag-tarmkanalen och fördelas relativt jämnt i hela kroppen. Dess biologiska omsättningstidighet är emellertid betydligt snabbare än strontiums. \(^{137}\)Cs måste framförallt betraktas som en källa för ev genetiska effekter.

Speciella dietförhållanden kan dock leda till att \(^{137}\)Cs blir den dominerande källan för människans inre bestrålning. Sådan är t ex situationen för befolkningen i de arktiska och subarktiska områden där renkött och insjöfisk utgör dominerande födosämmen.

3. Jod-131 (\(^{131}\)I)

Fissionsprodukten \(^{131}\)I har en kort fysikalisk halveringstid (8 dagar) och dess närvaro i biosfären är av betydelse endast de första månaderna efter ett kärnvapenprov eller ett annat större utsläpp. Kontinuerliga utsläpp från kärntekniska anläggningar kan dock ge upphov till en \(^{131}\)I-kontaminering av mera permanent karaktär. Under kornas betestation blir den färsk a mjölen människans mest betydande källa för \(^{131}\)I. Den via födan intagna \(^{131}\)I-ämnen koncentreras till sköldkörteln och ger upphov till en hög absorberad dos i detta organ jämfört med kroppen i övrigt. Det är därför nödvändigt att stickprovskontrollera \(^{131}\)I-innehållet i mjölk från lantbruksbelägna i närheten av kärntekniska anläggningar även om kontinuerliga mätningar av jodaktiviteten sker i anläggningens skorsten. Olyckor vid kärnkraftanläggningar kan som följd av \(^{131}\)I-utsläpp ge ökade dosbidrag (främst till sköldkörteln) till enskilda individer eller
begränsade grupper av människor. Det bäst kända exemplet är Windscale-

4. Kol-14 (14C)

14C produceras kontinuerligt genom att neutroner i den kosmiska strålningsen växelverkar med kväve i atmosfären, 14N(n,p)14C. Luftens koldioxid (CO2) kommer därför att innehålla en liten del 14CO2, som tillföres växterna vid kolsyresammanläggningen. 14C har också producerats vid kärnvapenproven i atmosfären. År 1963 var t ex troposfärens 14C-
innehåll 80% högre än vad som förklaras av den naturliga produktionen. Den totala mängd 14C som deponerats på jordytan efter bombproven upp-
går emellertid bara till ca 3% av biosfärens to-
tala naturliga 14C-reservoar.

5. Tritium (3H)

Även tritium produceras kontinuerligt genom den kosmiska strålningsen växelverkan med kväve och syre i den övre atmosfären. Den mest betydande källan till tritiumkontaminering av vår omgiv-
ning är emellertid för närvarande de prosvärningar av fusionsbombor, som utförts i atmosfären. Tritium har här producerats genom rektionerna 2H(n,γ)3H och 6Li(n,n') 3H i den litium-
deuterid som fanns i bomberna. Kärnvapenproven har tillfört vår omgivning ca 1700 MCI 3H. Det-
sta bidrag är väsentligt större än jämviktsvärdet av den naturliga produktionen (ca 70 MCI).

Tritium produceras vid en rad neutroninfångnings-
proceser i alla reaktorer, men huvuddelen fri-
göres ej förrän i bearbetningsanläggningarna för använda bränslelement. Utvecklingen beträffande reaktorproducerat tritium framgår av fig.25 som också visar bidragen från kärnvapenprov och den naturliga produktionen.

En eventuell framtida användning av termoukle-
dra (fusions-) reaktorer kommer att i mycket hög grad påverka 3H-nivån. Ca 100 000 gånger mera 3H produceras i en tänkt fusionsreaktor än i en mots-
värande fissionsreaktor.

En användning i större skala av kärnladdningar för fredliga sprängningar på eller ovanför jord-
ytan skulle kunna leda till en mycket större glo-
bal kontaminering med tritium än den som kan orsakas av kärnkraftsindustrin under de närmaste
30 åren. Ett utnyttjande av kärnladdningar för att spränga en ny Panama-kanal har t ex beräknats
ge mer än 1000 MCI 3H.