I STRÅLNINGENS VÄXELVERKAN MED MATERIA

I.1 STRÅLNINGSFÄLTETS STORHETER

All partikel- och fotonstrålning med så hög energi per partikel eller kvantum, att den kan jonisera eller excitera materiens atomer och molekyler kallas joniserande strålning. Strålningens energi per partikel eller kvantum anges vanligtvis i enheten elektronvolt, eV.

\[1 \text{ eV} = 1,602 \cdot 10^{-19} \text{ J (Joule=Ws)} = 1,602 \cdot 10^{-12} \text{ erg} = 3,826 \cdot 10^{-20} \text{ cal} \]

För varje joniserad molekyl i materien absorberas i genomsnitt en energimängd av omkring 30 eV.

Strålningsfältet kring eller i en strålkälla karakteriseras av antalet partiklar eller kvanta som emitteras per tidsenhet och hur dessa fördelas i rymden. De fysikaliska storheter som beskriver strålningsfältet i olika punkter i rymden är främst flödestätheten \(\varphi \) och partiklarnas energi \(E \).

Flödestätheten \(\varphi \) eller partikelfluensraten (eng flux density eller fluence rate) i ett strålningsfält är antalet partiklar \(dN \), som under tidsintervallet \(dt \) träffar en sfär, dividerat med sfärens tvarsnittsytan \(da \) och tidsintervallet \(dt \).

Denna storhet är densamma som inom neutronfysiken
betecknas med $n(v)$ v (neutroner m$^{-2}$ s$^{-1}$).

\[
\text{Flödestäthet: } \Phi = \frac{dN}{da \cdot dt} = \left[\frac{\text{partiklar}}{m^2 \cdot s} \right]
\]

\[
dN \text{ partiklar} \\
da
\]

\[
da = \text{sfärens tvärnittysyta}
\]

FIGUR I-1 Illustration till definition av flödestäthet

Energiflödestätheten ψ, även kallad energifluensraten eller intensiteten (eng energy flux density eller energy fluence rate) är summan av energierna (exklusive viloenigierna) dE_{fl} hos alla partiklar som i tidsintervallet dt träffar en sfär, dividerat med sfärens tvärnittysyta da och tidsintervallet dt.

\[
\psi = \frac{dE_{fl}}{da \cdot dt} \left[J \text{ m}^{-2} \text{ s}^{-1} \right]
\]

För monoenergetisk strålning erhålls ψ genom att multiplicera ϕ med energin per partikel E eller
kvantum $h\nu$.

$$\psi = \varphi E; \quad \psi_\gamma = \varphi h\nu$$

I praktiken har man ofta partiklar av olika energier som träffar sfären i Figur I-1. Integralfordelningen $\varphi(E)$ är den del av flödestätheten som utgörs av partiklar med energin mellan 0 och E. Differentialfordelningen φ_E är derivatan av $\varphi(E)$ med avseende på E.

$$\varphi_E = \frac{d\varphi(E)}{dE}; \quad \varphi = \varphi(\infty) = \int_0^\infty \varphi_E \, dE$$

Integralen av denna differentialfordelning över alla partikelennergier är lika med flödestätheten φ.

Växelverkansträffytan σ, även kallad växelverkannstvärtsnitt (eng microscopic cross section) anger hur många växelverkningar av ett bestämt slag som i medeltal inträffar per atom och sekund då man bestrålar ett medium med flödestätheten 1 partikel $m^{-2} \, s^{-1}$.

Antalet växelverkningar dw, per tidsenhet i volyms-elementet dv av ett medium som innehålla n_a atomer m^{-3} som bestrålas med flödestätheten φ blir således:

$$dw = \varphi n_a \sigma \, dv \left[\frac{\text{partiklar}}{m^2 \, s} \cdot \frac{\text{atomer}}{m^3} \cdot \frac{m^2}{\text{atom}} = \frac{1}{s} \right]$$
FIGUR I-2 Sannolikheten för att en infallande partikel skall träffa någon atom i volymselementet dV ges av kvoten mellan summan av atomernas träffytor \((n_a dV\sigma)\) och volymselementets tvärsnitts- yta \((da)\) dvs \(p = n_a dV \sigma/da\) dvs

\[dw = (dN/dt)(n_a \sigma dV/da) = \varphi n_a \sigma dV \]
Laddade partiklar (α-partiklar, protoner, elektroder etc) med tillräckligt hög energi för att vid kollision med materiens atomer slita loss elektroder varvid jonpar bildas kallas direkt joniserande strålning. Om de vid kollisionen erhållna sekundära elektronerna har tillräckligt med energi för att bilda mer än tre ytterligare jonpar kallas de delta-partiklar, δ-partiklar. \((E_0 \gg 100 \text{ eV}) \)

FIGUR I-3 Schematisk framställning till hur exciterade och joniserade molekyler bildas längs en laddad partikels väg. För varje primärjonisation exciteras också en del molekyler varför medelenergin per jonisation (\(\overline{W} \sim 30 \text{ eV} \)), överskrider jonisationspotentialen. En 'spur' eller 'cluster' är en jonklunga innehållande 2–3 primära jonisations sationer dvs en lokal energiabsorption av 60–100 eV.
Vid uppbromsningen av de primära partiklarna överföres den största delen av energin till atomer som ligger mycket nära partiklarna. En del energi transporteras dock av δ-partiklarna till mer avlägsna molekyler.

Det energibelopp \(dE > 0 \) som en laddad partikel med energin \(E \) förlorar på sträckan \(dl \) i mediet är proportionell mot denna sträcka dvs \(dE = S \, dl \). Proportionalitetskonstanten \(S \) är en komplicerad funktion av partikelns energi, det bromsande mediets atomnummer och täthet. Den kallas 'bromsförmågan' (engelska stopping power, tyska Bremsvermögen) och uttrycker det bromsande mediets effekt på den laddade partikeln. I en del litteratur förekommer uttrycket 'specifika energiförlusten' \(dE/dx \) vilken är \(< 0 \). Observera alltså att \(S = - \, dE/dx > 0 \).

I.2.1 Tunga laddade partiklar

Protoner, \(\alpha \)-partiklar och andra tunga laddade partiklar överför sin kinetiska energi till materiens atomer i huvudsak genom coulombväxelverkan med elektronerna. Detta resulterar i många små energiförluster som var för sig ej nämnvärt förändrar den tunga partikelns bana, vilken sålunda blir en i stort sett rät linje. I slutet av spåret, då energin minskat, stiger jonisationstätheten till ett maximum för att sedan falla abrupt. Placeras
absorbatormaterial av olika tjocklekar mellan en väl kollimerad strålkälla och en detektor erhålls en transmissionskurva enligt figur I-4.

FIGUR I-4 Överst i figuren ett α-spår där bredden är ett mått på jonisationstäthet (jonpar per längdenhet). Snabba sekundäremulsioner så kallade δ-partiklar betecknas med δ. Absorptionskurvan visar ett abrupt slut med en liten skillnad mellan medelräckvidd \bar{R} och den extrapolerade räckvidden R_0.

1.2.2 Lätta laddade partiklar
Betapartiklar och andra elektroner förlorar energi dels genom kollisioner med materiens elektroner, dels genom strålningsförluster (bromstrålning).

Vid kollisioner med materiens elektroner förlorar den infallande elektronen upp till hälften av sin

kinetiska energi och ändrar riktning upp till 180°. Då en elektron avböjs i fältet av tex en atomkärna emitteras elektromagnetisk strålning så kallad bromsstrålning. Intensitetsfördelningen av den bildade bromsstrålningen är grovt sett konstant upp till elektronens maximala energi.

Den totala massbromsförmågan S/ρ, hos ett material
för laddade partiklar är kvoten mellan \(\frac{dE}{\rho \, dl} \), där \(dE \) är det energibelopp (> 0) som partiklar med viss energi förlorar då de tillryggalägger sträckan \(dl \) i ett medium med tättheten \(\rho \).

\[
\frac{S}{\rho} = \frac{1}{\rho} \frac{dE}{dl}
\]

kallas \textit{mass} bromsförmågan

\[[J \, \text{kg}^{-1} \, \text{m}^2] \]

\[
S = \frac{dE}{dl}
\]

kallas \textit{linjära} bromsförmågan

\[[J \, \text{m}^{-1}] \text{ eller } [\text{keV} \, \mu\text{m}^{-1}] \]

Man kan skriva den totala bromsförmågan för elektroner som en summa av kollisionsbromsförmågan \((dE/dl)_{\text{koll}}\) och strålningsbromsförmågan \((dE/dl)_{\text{str}}\):

\[
S = (\frac{dE}{dl})_{\text{koll}} + (\frac{dE}{dl})_{\text{str}}
\]

eller

\[
\frac{S}{\rho} = \left(\frac{1}{\rho} \frac{dE}{dl} \right)_{\text{koll}} + \left(\frac{1}{\rho} \frac{dE}{dl} \right)_{\text{str}}
\]

\[
\frac{(dE)_{\text{str}}}{(dE)_{\text{koll}}} \approx \frac{(E+m_0c^2)Z}{1600 \, m_0c^2}
\]

Kvoten mellan strålnings- och kollisionsbromsför-
mågan stiger vid högre elektronenergier \(E(\text{MeV}) \) och högre atomnummer \(Z \) hos det bromsande mediet. Då t.ex elektroner med energin 2 MeV bromsas i
vävnad utgöres bidraget till totala bromsförmågan av 2% strålningsförluster och 98% kollisionsförluster.

![Diagram of S vs E/ln for different particles]
I.3 VÄXELVERKAN MED INDIREKT JONISERANDE STRÅLNING

Sådana oladdade partiklar (ex neutroner och fotoner) som kan frigöra direkt joniserande partiklar såsom rekylprotoner och elektroner eller som kan initiera kärnreaktioner t ex \((n,\alpha)\), \((n,p)\), \((\gamma,np)\) kallas indirekt joniserande strålning.

I.3.1 Fotonstrålning

Elektromagnetisk strålning eller fotonstrålning täcker ett stort våglängds- eller energiintervall och har inom detta varierande egenskaper. Det energiintervall som är intressant i strålskyddssammanhang är från keV och uppåt. Beroende på ursprunget förekommer olika benämningar på fotonstrålning:

Bromstrålning fotoner som emitteras vid inbromsning av elektroner genom avböjning i fältet kring atomkärnan. Produceras bland annat i röntgenrör (kontinuerlig röntgenstrålning)

Karakteristisk- röntgenstrålning fotoner som emitteras vid elektronövergångar i atomerna. Energin är karakteristisk för ämnet \((Z)\)

\(\gamma\)-strålning fotoner som emitteras vid deexcitation av atomkärnor
Annihilationstrålning fotoner som emitteras då en positron och negatron förintas. Energin motsvarar elektronens vilmassa dvs 0,511 MeV.

Oberoende av ursprunget uppvisar fotonstrålning med samma energi lika egenskaper vid absorption i materia. De viktigaste absorptionsprocesserna är fotoelektrisk effekt, comp toneffekten och parbildning.

a. Fotoelektrisk absorption äger rum då en foton totalt absorberas av en elektron i en atom. Hela fotonens energi ($h\nu$) överförs till en av atomens elektroner vanligtvis K-elektron som är närmast kärnan. Denna så kallade fotoelektron slungas ut ur sin bana med energin $E_K = h\nu - \Phi_K$ där Φ_K är elektronens bindningsenergi.

FIGUR I-7 Illustration till fotoelektrisk absorption, den så kallade fotoeffekten, i K- och L-skalet
Träffytan per atom σ_f för fotoelektrisk absorption är beroende av det absorberande ämnets atomnummer och fotonens energi $h\nu$.

$$\sigma_f \approx k Z^5 (h\nu)^{-m} \text{[m}^2 \text{per atom]} \text{ för } h\nu > \Phi_K$$

$$m \approx \begin{cases} 3 & 0.1 < h\nu < 0.15 \text{ MeV} \\ 2 & 0.15 < h\nu < 0.5 \text{ MeV} \\ 1 & 0.5 < h\nu < 5 \text{ MeV} \end{cases}$$

För ämnen med högt atomnummer Z och vid låga fotonenergier är sålunda den fotoelektriska effekten av stor betydelse. Då fotonenergin $h\nu$ är lika stor som elektronernas bindningsenergi Φ är träffytan diskontinuerlig

$$\sigma_f (h\nu - dh\nu) < \sigma_f (h\nu + dh\nu) \text{ då } h\nu = \Phi$$

Fotoelektrisk absorption lämnar oftast en vakans i de inre elektronskalan. Då denna besättes med en elektron från ett yttre skal utsändes den frigjorda bindningsenergin som karakteristisk röntgenstrålning eller överföres till så kallade Auger elektroner. Denna sekundärstrålning har energier varierande från 100 keV i hög Z-material till 10-100 eV i låg Z-material.

b. Compton-effekten kallas den process som innebär att den infallande fotonen kolliderar med en elektron i de yttre elektronskalan hos en atom. Bindningsenergin för dessa elektroner är försämbar jämfört med den infallande fotonens energi $h\nu_o$.

19
Fotonen sprids en vinkel θ mot infallsriktningen och man kan lätt visa att fotonens energi efter spridningen blir

$$h\nu_1 = \frac{h\nu_0}{1 + \frac{h\nu_0}{mc^2} (1 - \cos\theta)}$$

Rekylelektronens energi blir då $E_c = h\nu_0 - h\nu_1$.
Denna elektron brukar kallas comptonelektron (c).
Vid små spridningsvinklar behåller fotonen större delen av sin energi.

FIGUR I-8 Illustration till comptoneffekten

Vinkelfördelningen av de spridda fotonerna beror på den infallande fotonens energi. Vid höga energier
sker företrädesvis spridningar med små vinklar.

FIGUR I-9 Differentiella träffytan \(\frac{d\sigma^e}{d\Omega} \) per rymdvinkelenhet och elektron för spridning av fotoner med olika begynnelseenergor, olika vinklar \(\theta \)

Antag att target \(T \) i Figur I-9 innehåller \(n_e \) elektroner per \(m^2 \). Vi vill beräkna antalet spridda fotoner som träffar en detektor med tvärsnittsytan \(\Delta a \), som placerats på avståndet \(r \) från target då detta bestrålas med \(N_\gamma \) fotoner. Antalet fotoner som sprids i riktningen \(\theta \) kan skrivas som:

\[
dN_\gamma(\theta) = \left(\frac{d\sigma^e}{d\Omega} \right) n_e N_\gamma \Delta \Omega
\]
Den differentiella träffytn för spridning av 1 MeV infallande fotoner i riktningen θ markeras i figur med en vektor, vars längd ger träffytn. Rymdvinkel电子商务t detektorn upptar är $\Delta \Omega = \Delta a/r^2$. Således blir antalet fotoner som träffar detektorn:

$$dN_\gamma(\theta) = \left(\frac{d\sigma_\gamma^0(\theta)}{d\Omega}\right)n_eN_\gamma \frac{\Delta a}{r^2}$$

Totala spridningsträffytn per elektron är proportionell mot ytorna som omsluter de olika kurvorna i Figur I-9:

$$\sigma_\gamma^e = \int \left(\frac{d\sigma_\gamma^e(\theta)}{d\Omega}\right)d\Omega = \int \left(\frac{d\sigma_\gamma^e(\theta)}{d\Omega}\right)2\pi \sin \theta d\theta$$

Av Figur I-9 framgår således även indirekt hur totala spridningsträffytn varierar med energin hos den infallande fotonen. Spridningsträffytn per atom är träffytn per elektron multiplicerad med antalet elektroner per atom, dvs

$$\sigma_\gamma^e = \sigma_\gamma^0 Z$$

c. Farbildningsprocessen är den tredje huvudtypen för fotonstrålningens växelverkan med materia. Vid denna process, som äger rum i atomkärnans omedelbara närhet, omvandlas fotonens energi till en positron och en negatron. Träskelenergin för denna process är $2m_0c^2 = 1.022$ MeV dvs lika med
vilomassorna hos negatronen plus positronen. Partiklarna förlorar sin kinetiska energi genom kolli
dsioner med materiens elektroner. Positronen fångas
slutligen in av en elektron och förintas (annihile-
ras) under emission av två 0,511 MeV-fotoner
(annihilationskvanta).

\[
\text{infallande } \\
\text{foton } \\
hv \\
> 1,02 \text{MeV} \\
\text{e}^+ \\
\text{e}^- \\
\text{annihilation:} \\
e^+ + e^- \rightarrow 2hv \\
\text{hv} = 0,511 \text{MeV}
\]

FIGUR I-10 Illustration till parbildnings-
processen och annihilationsprocessen

Träffytan per atom för parbildningsprocessen \(\phi_p \) ökar
dels med den infallande fotonens energi och dels med
det absorberande ämnets atomnummer \(Z \).

d. **Dämpningskoefficienten** \(\mu \), även kallad
attnueringskoefficienten (eng attenuation
coefficient), för fotoner beror på träffytorna för de tre växelverkansprocesserna: fotoeffekten (f), compton-effekten (c) och parbildningsprocessen (p).

Medelantalet växelverkningar av en viss typ i per tidsenhet dw_i, i ett bestrålat volymselement dV kan enligt Figur 1-2 skrivas som:

$$dw_i = \sigma_i n_a \varphi dV = \sigma_i \frac{n_a}{\rho} \varphi \rho dV = \sigma_i \frac{n_a}{\rho} \varphi dm$$

$\sigma_i = \text{träffytan per atom för växelverkan av typ } \left[\text{atom}^{-1} \right]$, se sid 1.16

$n_a = \text{antalet atomer per volymenhet } \left[\text{atomer m}^{-3} \right]$

$\varphi = \text{fotonflödestätheten } \left[\text{fotoner m}^{-2} \text{ s}^{-1} \right]$

$\rho = \text{tätheten } \left[\text{kg m}^{-3} \right]$

$dm = \text{ett massselement som är så litet att } \varphi \text{ kan betraktas som konstant inom elementet}$

Man kan således uttrycka medelantalet växelverkningar för de olika processerna per mass- och tidsenhet som:

$$\frac{dw_i}{dm} = \sigma_i \frac{n_a}{\rho} \varphi$$

Fotoeffekten $i = f$

$$\frac{dw_f}{dm} = \sigma_f \frac{n_a}{\rho} \varphi = \frac{\tau}{\rho} \varphi$$

Compton-effekten $i = c$

$$\frac{dw_c}{dm} = \sigma_c \frac{n_a}{\rho} \varphi = \frac{\sigma}{\rho} \varphi$$

Parbildningsprocessen $i = p$

$$\frac{dw_p}{dm} = \sigma_p \frac{n_a}{\rho} \varphi = \frac{\kappa}{\rho} \varphi$$
Totala antalet växelverkningar per mass- och tidsenhet blir då:

\[
\frac{dw}{dm} = \frac{n}{\rho} (\sigma_f + \sigma_c + \sigma_p) \varphi = \left(\frac{T}{\rho} + \frac{\sigma}{\rho} + \frac{\kappa}{\rho} \right) \varphi = \frac{\mu}{\rho} \varphi
\]

där \(T, \sigma \) och \(\kappa \) betecknar de makroskopiska träffytorna eller de linjära dämpningskoefficienterna för de olika processerna.

\[
\mu = T + \sigma + \kappa \quad \text{kallas den totala linjära dämpningskoefficienten}
\]

\[
\frac{\mu}{\rho} = \frac{T}{\rho} + \frac{\sigma}{\rho} + \frac{\kappa}{\rho} \quad \text{kallas mass-dämpningskoefficienten (eng mass attenuation coefficient)}
\]

I en del litteratur betecknas mass-dämpningskoefficienten \(\mu_m = \mu_{mf} + \mu_{mc} + \mu_{mp} \left[m^2 \text{kg}^{-1} \right] \), vilket dock ej överensstämmer med ICRUs rekommendationer.

Växelverkan i det ovan nämnda resonemanget är en process där energin och riktningen hos den infallande fotonen förändras. Eftersom det endast är vid photoeffekten som hela fotonens energi överförs till en elektron är den i mediet per tids- och massenhet absorberade energin oftast inte identisk med energiförlusten från primärstrålen.

Multiplicerar vi medelantalet växelverkningar per tids- och massenhet dvs \(dw/dm \), med den energi \(\bar{\epsilon}_i \) som i genomsnitt absorberas per växelverkan av typ...
1.20

I, erhålls den per mass- och tidsenhett absorberade energin

\[\frac{d\bar{\epsilon}}{dm} = \phi \sum_i \frac{d\bar{\epsilon}_i}{dm} \]

Förlänges detta uttryck med den primära fotonens energi \(h\nu_0 \) erhålls:

\[\frac{d\bar{\epsilon}}{dm} = \left(\frac{\tau}{\rho} \frac{\bar{\epsilon}_f}{h\nu_0} + \frac{\sigma}{\rho} \frac{\bar{\epsilon}_c}{h\nu_0} + \frac{\bar{\epsilon}_p}{h\nu_0} \right) \phi h\nu_0 = \left(\frac{\tau_{en}}{\rho} + \frac{\sigma_{en}}{\rho} + \frac{\nu_{en}}{\rho} \right) \phi h\nu_0 = \frac{\mu_{en}}{\rho} \phi h\nu_0 \]

\[\frac{\mu_{en}}{\rho} \quad \text{[m}^2 \text{kg}^{-1}] \quad \text{kallas mass-energiabsorptionskoefficienten (eng mass energy absorption coefficient)} \]

\[\frac{d\bar{\epsilon}}{dm} = \frac{\mu_{en}}{\rho} \phi h\nu_0 \]

är den absorberade energin per mass- och tidsenhett vilket är analogt med absorberad dosrat \(D \) (Jfr kap II.1.4)

I.3.2 Neutronstrålning

Det energiområde inom vilket neutroner har betydelse som joniserande strålning är betydligt större än för laddade partiklar och fotoner. Man brukar indela neutronstrålning i olika grupper efter deras energi. Gränserna för indelningen är flytande.

I motsats till laddade partiklar och fotoner vilka företrädesvis växelverkar med atomernas banelektro-

ner så sker neutronväxelverkan endast med atomkärlorna.
TABELL I:1

<table>
<thead>
<tr>
<th>Beteckning av neutroner</th>
<th>Energioråde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termiska</td>
<td></td>
</tr>
<tr>
<td>Epitermiska 1 keV</td>
<td>0,1 - 1 eV</td>
</tr>
<tr>
<td>Resonans</td>
<td>1 - 100 eV</td>
</tr>
<tr>
<td>Intermediära</td>
<td>1 keV - 1 MeV</td>
</tr>
<tr>
<td>Snabba</td>
<td>1 MeV - 10 MeV</td>
</tr>
<tr>
<td>Högenergetiska</td>
<td></td>
</tr>
</tbody>
</table>

Träffytan för neutronväxelverkan är dels beroende av neutronernas energi och dels av vilket ämne som bestrålas. Vi skall först betrakta de biologiskt intressanta ämnena vete, kol, kväve och syre dvs de grundämnen som vi till största delen själva består av. De mest betydelsefulla neutronväxelverkanprocesserna med dessa element är elastisk spridning och infångning.

TABELL I:2

De vanligaste grundämnen i människokroppen som vikts- och atom%.

<table>
<thead>
<tr>
<th>Element</th>
<th>Vikts%</th>
<th>Atomer per g</th>
<th>Atom%</th>
</tr>
</thead>
<tbody>
<tr>
<td>^1H</td>
<td>10</td>
<td>600×10^{20}</td>
<td>62.8%</td>
</tr>
<tr>
<td>^6C</td>
<td>18</td>
<td>90×10^{20}</td>
<td>9.5%</td>
</tr>
<tr>
<td>^7N</td>
<td>3</td>
<td>13×10^{20}</td>
<td>1.4%</td>
</tr>
<tr>
<td>^8O</td>
<td>65</td>
<td>245×10^{20}</td>
<td>25.7%</td>
</tr>
</tbody>
</table>

SUMMA: 97% 948×10^{20} 99%
a. **Elastisk spridning** innebär att en del av neutronens energi överförs till en rekylkärna, vilken i sin tur avger sin energi till omgivande atomer genom direkt jonisation. Rekylkärnans energi beror på neutronens spridningsvinkel \((0-180^0) \) och medelvärdet över alla vinklar blir:

\[
\bar{\xi}_k = \frac{2M}{(M+1)^2} E_n
\]

\(\bar{\xi}_k \) = den i medeltal överförda energin till rekylkärnorna

\(M \) = atomkärnans massa \(m_k \)/neutronens massa \(m_n \)

\(E_n \) = neutronens begynnelsseenergi

Vid kollision med väteatomer \((M=1) \) blir \(\bar{\xi}_p = 0.5 E_n \) dvs i medeltal överförs vid varje kollision 50\% av neutronens energi till rekylprotoner.

T A B E L L I:3

Medelenergiförlusten \(\bar{\xi}_k \) i \(\% \) vid elastisk spridning av neutroner

<table>
<thead>
<tr>
<th>Kärna</th>
<th>H</th>
<th>C</th>
<th>N</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

\[
\frac{\bar{\xi}_k}{E_n} \times 100 = 50 \hspace{1cm} 14 \hspace{1cm} 12 \hspace{1cm} 11
\]
b. **Infångning** av långsamma neutroner sker främst i kväve och väte:

\[{}^{14}_n(n,p){}^{14}_C \] \[Q = 0.63 \text{ MeV} \]

\[{}^{1}_n(n,\gamma){}^{2}_H \] \[Q = 2.2 \text{ MeV} \]

Den vid kvävereaktionen frigjorda protonen avger (på samma sätt som rekylprotonerna vid elastisk spridning) sin energi genom direkt jonisation. Vid vätereaktionen utsändes \(\gamma \)-strålning med hög energi vilken i huvudsak absorberas genom parbildning och comptonprocesser såvida den inte lämnar det bestrålade mediet utan att växelverka.